Phép chia có dư

Cơ sở lý thuyết của phép chia với dư là một định lý trong lý thuyết số. Phép chia này được ứng dụng trong giải thuật Euclid tìm ước chung lớn nhất của hai số nguyên khác không.

Giả sử cho hai số nguyên ad, với d ≠ 0

Khi đó tồn tại duy nhất các số nguyên qr sao cho a = qd + r và 0 ≤ r < | d |, trong đó | d | là giá trị tuyệt đối của d.

Các số nguyên trong định lý được gọi như sau

Phép toán tìm qr được gọi là phép chia với dư.

Chứng minh định lý gồm hai phần: đầu tiên chứng minh sự tồn tại của qr, thứ hai, chứng minh tính duy nhất của qr.

Xét tập hợp

S = { a − n d : n ∈ Z } {displaystyle S=left{a-nd:nin mathbb {Z} right}} {displaystyle S=left{a-nd:nin mathbb {Z} right}}

Ta khẳng định rằng S chứa ít nhất một số nguyên không âm. Có hai trường hợp như sau.

Như vậy S chứa ít nhất một số nguyên không âm. Theo nguyên lý sắp thứ tự tốt, trong S có một số nguyên không âm nhỏ nhất, ta gọi số ấy là r. Đặt q = (ar)/d, thì qr là các số nguyên và a = qd + r.

Ta còn phải chỉ ra rằng 0 ≤ r < |d|. Tính không âm của r là rõ ràng theo cách chọn r. Ta sẽ chứng tỏ dấu bất đẳng thức thứ hai.

Giả sử nguợc lại r ≥ |d|. Vì d ≠ 0, r > 0, nên d > 0 hoặc d < 0.

Như vậy ta đã chứng minh sự tồn tại của qr.

Giả sử rằng tồn tại q, q' , r, r' với 0 ≤ r, r' < |d| sao cho a = dq + ra = dq' + r' . Không mất tính tổng quát giả sử qq' .

Từ hai đẳng thức trên ta có: d(q' - q) = (r - r' ).

Nếu d > 0 thì r' rr < dd+r' , và như vậy (r-r' ) < d. còn nếu d < 0 thì rr' r' < -d ≤ -d+r, và do đó -(r- r' ) < -d. Trong cả hai trường hợp ta có |r- r' | < |d|.

Mặt khác đẳng thức d(q' - q) = (r - r' ) chứng tỏ rằng |d| chia hết |r- r' |; do đó |d| ≤ |r- 'r' | hoặc |r- r' |=0. Nhưng vì |r-r' | < |d|, nên chỉ có thể r=r' . Thay vào đẳng thức d(q' - q) = (r - r' ) ta có dq = dq' và vì d khác 0, nên q = q' . Tính duy nhất đã được chứng minh.

Link nội dung: https://itt.edu.vn/index.php/phep-chia-co-du-a1301.html