Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • Tranh Tô Màu
  • Meme
  • Avatar
  • Hình Nền
  • Ảnh Hoa
  • Ảnh Chibi
  • Ảnh Nail
Tranh Tô Màu Meme Avatar Hình Nền Ảnh Hoa Ảnh Chibi Ảnh Nail
  1. Trang chủ
  2. chính tả
Mục Lục

Lý thuyết phương trình đường tròn

avatar
Xuka
19:24 10/08/2025

Mục Lục

1. Lập phương trình đường tròn có tâm và bán kính cho trước

Phương trình đường tròn có tâm (I(a; b)), bán kính (R) là :

$${(x - a)^2} + {(y - b)^2} = {R^2}$$

2. Nhận xét

Phương trình đường tròn ({(x - a)^2} + {(y - b)^2} = {R^2}) có thể được viết dưới dạng

$${x^2} + {y^2} - 2ax - 2by + c = 0$$

trong đó (c = {a^2} + {b^2} - {R^2})

( Rightarrow ) Điều kiện để phương trình ({x^2} + {y^2} - 2ax - 2by + c = 0) là phương trình đường tròn ((C)) là: ({a^2} + {b^2}-c>0). Khi đó, đường tròn ((C)) có tâm (I(a; b)) và bán kính (R = sqrt{a^{2}+b^{2} - c})

3. Phương trình tiếp tuyến của đường tròn

Cho điểm ({M_0}({x_0};{y_0})) nằm trên đường tròn ((C)) tâm (I(a; b)).Gọi (∆) là tiếp tuyến với ((C)) tại (M_0)

Ta có (M_0) thuộc (∆) và vectơ (vec{IM_{0}}=({x_0} - a;{y_0} - b)) là vectơ pháp tuyến cuả ( ∆)

Do đó (∆) có phương trình là:

$({x_0} - a)(x - {x_0}) + ({y_0} - b)(y - {y_0}) = 0$ (1)

Phương trình (1) là phương trình tiếp tuyến của đường tròn ({(x - a)^2} + {(y - b)^2} = {R^2}) tại điểm (M_0) nằm trên đường tròn.

Lý thuyết phương trình đường tròn</>

4. Bài tập về phương trình đường tròn

Bài 1: Cho đường cong (Cm): x2+y2-2mx-4(m-2)y+6-m=0. Tìm điều kiện của m để (Cm) là phương trình đường tròn.

Lời giải:

Điều kiện để ((C_m)) là phương trình đường tròn là:

(eqalign{& {a^2} + {b^2} - c > 0 Leftrightarrow {m^2} + 4{left( {m - 2} right)^2} - left( {6 - m} right) > 0 cr& Leftrightarrow 5{m^2} - 15m + 10 > 0 Leftrightarrow left[ matrix{m > 2 hfill crm < 1 hfill cr} right. cr} )

Bài 2: Viết phương trình của đường tròn có tâm (Ileft( -3;4 right))và bán kính (R=2)

Lời giải:

Phương trình của đường tròn có tâm (I(-3;4)) và bán kính (R=2) là: ({{(x+3)}^{2}}+{{(y-4)}^{2}}={{2}^{2}}) hay({{(x+3)}^{2}}+{{(y-4)}^{2}}-4=0)

Bài 3: Phương trình nào sau đây là phương trình đường tròn?

A. ({{x}^{2}}+2{{y}^{2}}-4x-8y+1=0)

B. (4{{x}^{2}}+{{y}^{2}}-10x-6y-2=0)

C. ({{x}^{2}}+{{y}^{2}}-2x-8y+20=0)

D. ({{x}^{2}}+{{y}^{2}}-4x+6y-12=0)

Lời giải:

({{x}^{2}}+2{{y}^{2}}-4x-8y+1=0) không phải là phương trình đường tròn. Vì ({{x}^{2}}:{{y}^{2}}=1:2ne 1:2)

(4{{x}^{2}}+{{y}^{2}}-10x-6y-2=0) không phải là phương trình đường tròn. Vì ({{x}^{2}}:{{y}^{2}}=4:1ne 1:2)

({{x}^{2}}+{{y}^{2}}-2x-8y+20=0)có (a=1,,,b=4,,,c=20). Ta thấy (a,b,c)không thỏa mãn điều kiện ({{a}^{2}}+{{b}^{2}}>c). Đây không phải là một phương trình đường tròn.

({{x}^{2}}+{{y}^{2}}-4x+6y-12=0) có (a=2,,,b=-3,,,c=-12). Ta thấy (a,b,c) thỏa mãn điều kiện ({{a}^{2}}+{{b}^{2}}>c). Đây là một phương trình đường tròn.

Chọn đáp án D.

Bài 4: Phương trình ({{x}^{2}}+{{y}^{2}}-2x+4y+1=0) là phương trình của đường tròn nào?

Lời giải:

({{x}^{2}}+{{y}^{2}}-2x+4y+1=0) có hệ số (a=1,b=-2,c=2) sẽ có tâm (Ileft( 1;-2 right)) và (R=sqrt{{{left( -1 right)}^{2}}+{{2}^{2}}-1}=2)

Bài 5: Trong số các đường tròn có phương trình dưới đây, đường tròn nào đi qua gốc tọa độ(O(0,0))?

A. ({{x}^{2}}+{{y}^{2}}=1.)

B. ({{x}^{2}}+{{y}^{2}}-x-y+2=0)

C. ({{x}^{2}}+{{y}^{2}}-4x-4y+8=0.)

D. ({{(x-3)}^{2}}+{{(y-4)}^{2}}=25.)

Lời giải:

A. ({{x}^{2}}+{{y}^{2}}=1.) Thay (x=0,y=0) ta có ({{0}^{2}}+{{0}^{2}}=2) là mệnh đề sai.

B. ({{x}^{2}}+{{y}^{2}}-x-y+2=0). Thay (x=0,y=0) ta có (2=0) là mệnh đề sai.

C. ({{x}^{2}}+{{y}^{2}}-4x-4y+8=0.) Thay (x=0,y=0) ta có (8=0) là mệnh đề sai.

D. ({{left( x-3 right)}^{2}}+{{left( y-4 right)}^{2}}=25.) Thay (x=0,y=0) ta có ({{left( -3 right)}^{2}}+{{left( -4 right)}^{2}}=25) là mệnh đề đúng. Vậy ({{left( x-3 right)}^{2}}+{{left( y-4 right)}^{2}}=25.) đi qua gốc tọa độ.

Chọn đáp án D.

Bài 6: Viết phương trình đường tròn (C) có tâm (I(2;-4)) và đi qua điểm (A(1;3))

Lời giải:

Ta có: (R=IA=sqrt{{{left( 1-2 right)}^{2}}+{{left( 3+4 right)}^{2}}}=sqrt{50})

Phương trình đường tròn (C) có tâm (Ileft( 2;-4 right))có bán kính (R=sqrt{50}) là: ({{left( x-2 right)}^{2}}+{{left( y+4 right)}^{2}}=50.)

Bài 7: Xác định mối quan hệ giữa điểm (M(4;2)) và đường tròn ((C)) có phương trình ({{x}^{2}}+{{y}^{2}}-8x-6y+21=0)

Lời giải:

Đường tròn (left( C right)) có phương trình ({{x}^{2}}+{{y}^{2}}-8x-6y+21=0) sẽ có tâm (Ileft( 4;3 right)) bán kính (R=sqrt{{{4}^{2}}+{{3}^{2}}-21}=2).

Ta có (MI=sqrt{{{left( 4-4 right)}^{2}}+{{left( 2-3 right)}^{2}}}=1<R=2Rightarrow M) nằm trong (left( C right))

Bài 8: Viết phương trình đường tròn (C) có tâm (Oleft( 0;0 right)) và đi qua điểm (A(1;3))

Lời giải:

Ta có (R=OA=sqrt{{{left( 1-0 right)}^{2}}+{{left( 3-0 right)}^{2}}}=sqrt{10})

Phương trình đường tròn (C) có tâm (Oleft( 0;0 right)) có bán kính (R=sqrt{10}) là: ({{x}^{2}}+{{y}^{2}}=10.)

Bài 9: Viết phương trình đường tròn tâm I thuộc đường thẳng d có phương trình(x-2y+5=0) và đi qua hai điểm(Aleft( 0;4 right),,Bleft( 2;6 right))

Lời giải:

Giả sử điểm (Ileft( {{x}_{I}};{{y}_{I}} right)) là tâm của đường tròn (C). Vì I nằm trên đường thẳng (x-2y+5=0) nên ta có ({{x}_{I}}-2{{y}_{I}}+5=0,,,,,left( 1 right))

Vì đường tròn (C) đi qua hai điểm (Aleft( 0;4 right),,,Bleft( 2;6 right)) nên ta có (IA=IB). Điều này tương đương với (I{{A}^{2}}=I{{B}^{2}}) hay ({{left( {{x}_{I}} right)}^{2}}+{{left( 4-{{y}_{I}} right)}^{2}}={{left( 2-{{x}_{I}} right)}^{2}}+{{left( 6-{{y}_{I}} right)}^{2}}Leftrightarrow {{x}_{I}}+{{y}_{I}}-6=0,,,left( 2 right))

Từ (1) và (2) suy ra (left{ begin{array}{l}{x_I} - 2{y_I} + 5 = 0{x_I} + {y_I} - 6 = 0end{array} right. Leftrightarrow left{ begin{array}{l}{x_I} = frac{7}{3}{y_I} = frac{{11}}{3}end{array} right. Rightarrow Ileft( {frac{7}{3};frac{{11}}{3}} right)).

Mặt khác ta có (R=IA=sqrt{{{left( frac{7}{3} right)}^{2}}+{{left( frac{11}{3}-4 right)}^{2}}}=sqrt{frac{50}{9}})

Vậy (C) có dạng (left( C right):{{left( x-frac{7}{3} right)}^{2}}+{{left( y-frac{11}{3} right)}^{2}}=frac{50}{9})

Bài 10: Viết phương trình đường tròn (C) đi qua 3 điểm (A(1;4),B(-4;0)) và (C(-2;2))

Lời giải:

Phương trình đường tròn đi qua 3 điểm là: ({{x}^{2}}+{{y}^{2}}-17x+21y-84=0)

0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

Trang thông tin tổng hợp itt

Website itt là blog chia sẻ vui về đời sống ở nhiều chủ đề khác nhau giúp cho mọi người dễ dàng cập nhật kiến thức. Đặc biệt có tiêu điểm quan trọng cho các bạn trẻ hiện nay.

© 2025 - itt

Kết nối với itt

Trang thông tin tổng hợp
  • Trang chủ
  • Tranh Tô Màu
  • Meme
  • Avatar
  • Hình Nền
  • Ảnh Hoa
  • Ảnh Chibi
  • Ảnh Nail
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký