Với bộ 10 Đề thi Toán 8 Giữa kì 1 Kết nối tri thức năm 2025 theo cấu trúc mới có đáp án và ma trận được biên soạn và chọn lọc từ đề thi Toán 8 của các trường THCS trên cả nước sẽ giúp học sinh lớp 8 ôn tập và đạt kết quả cao trong các bài thi Giữa học kì 1 Toán 8.
10 Đề thi Giữa kì 1 Toán 8 Kết nối tri thức (có đáp án, cấu trúc mới)
Xem thử
Chỉ từ 150k mua trọn bộ Đề thi Giữa kì 1 Toán 8 Kết nối tri thức theo cấu trúc mới bản word có lời giải chi tiết:
- B1: gửi phí vào tk: 1053587071 - NGUYEN VAN DOAN - Ngân hàng Vietcombank (QR)
- B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận đề thi
Phòng Giáo dục và Đào tạo ...
Đề thi Giữa kì 1 - Kết nối tri thức
năm 2025
Môn: Toán 8
Thời gian làm bài: phút
(Đề số 1)
A. TRẮC NGHIỆM (7,0 điểm)
Phần 1. Câu trắc nghiệm nhiều phương án lựa chọn (3,0 điểm)
Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.
Câu 1. Đa thức nào sau đây chưa thu gọn?
A. 4x2+x−y.
B. x4y+x−2yx4.
C. −x3y+25y2.
D. x+2y5.
Câu 2. Đơn thức nào sau đây đồng dạng với đơn thức −3x2y?
A. 3x2yz.
B. 12xyx.
C. xy2.
D.−3x2z .
Câu 3. Đa thức 7x3y2z−2x4y3 chia hết cho đơn thức nào dưới đây?
A. 3x4.
B. −3x4 .
C. −2x3y.
D. 2xy3.
Câu 4. Giá trị của biểu thức A=x4+4x2y−6z tại x=4,y=−5,z=−2 là
A. 76.
B. -52.
C. -25.
D. 37.
Câu 5. Hằng đẳng thức A2−B2=A−BA+Bcó tên là
A. bình phương của một tổng.
B. bình phương của một hiệu.
C. tổng hai bình phương.
D. hiệu hai bình phương.
Câu 6. Cho x3+12x2+48x+64=x+a3. Giá trị của a là
A. -64.
B. 64.
C. -4.
D. 4.
Câu 7. Trong một tứ giác, hai cạnh kề nhau là hai cạnh
A. có chung một đỉnh.
B. không có đỉnh chung nào.
C. thuộc một đường thẳng.
D. có hai đỉnh chung.
Câu 8. Cho hình vẽ bên. Khẳng định nào sau đây là sai?
A. Hai cạnh AB và BC kề nhau.
B. Hai cạnh BC và DA đối nhau.
C. Các cặp góc A^ và B^; C^ và D^ đối nhau.
D. Các điểm H và E nằm ngoài.
Câu 9. Cho tứ giác ABCD có A^=50°; B^=117°; C^=71° . Số đo góc ngoài tại đỉnh D bằng
A. 58°.
B. 107°.
C. 113°.
D. 83°.
Câu 10. Cho hình thang cân ABCD có AB // CD và A^=125°. Khi đó B^ bằng
A. 65°.
B. 125°.
C. 90°.
D. 55°.
Câu 11. Cho các hình sau. Khẳng định nào sau đây là đúng?
A. Cả ba hình đều là hình thoi.
B. Hình 1 và hình 2 là hình thoi.
C. Chỉ hình 1 là hình thoi.
D. Cả ba hình đều không phải hình thoi.
Câu 12. Tứ giác ABCD là hình bình hành nếu thỏa mãn điều kiện nào dưới đây?
A. AB // CD, AC = BD.
B. A^=C^.
C. AB = CD.
D. A^=C^; B^=D^.
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Trong câu 13 và câu 14, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Câu 13. Cho hai đa thức P=x2−4xy+9 và Q=−6xy−4y2+9.
Đa thức A và M thỏa mãn P - A = Q; M = (x - 2y)A - x3 + 5
a) Với x = 1; y = -1 thì giá trị của biểu thức P bằng 10.
b) Đa thức Q có bậc là 2.
c) A=x2+xy+4y2.
d) Giá trị của biểu thức M không phụ thuộc vào biến x.
Câu 14. Cho tam giác ABC không vuông tại A. Dựng bên ngoài tam giác đó hai tam giác ABD, ACE vuông cân tại đỉnh A rồi dựng hình bình hành AEID. Biết DAI^=ABC^. Gọi K là trung điểm của BD
a) DAI^+BAH^=45°.
b) AI⊥BC.
c) EBA^=CDA^.
d) KAI^=12KBC^.
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)
Trong mỗi câu hỏi từ câu 15 đến câu 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Câu 15. Cho B−5x2−2xyz=2x2+2xyz+1. Hạng tử tự do của đa thức B là bao nhiêu?
Câu 16. Cho biểu thức x3−9x2+27x−m là lập phương của một tổng. Tính giá trị của m.
Câu 17. Cho hình vẽ dưới đây. Tính số đo góc A (đơn vị: độ).
Câu 18. Cho hình thoi MNPQ có diện tích là 48 cm2..Gọi O là giao điểm của hai đường chéo. Tính diện tích tam giác MON (đơn vị: cm2).
B. TỰ LUẬN (3,0 điểm)
Bài 1. (1,5 điểm) Tìm x, biết:
a) x3+9x2+27x+19=0;
b) 25x+32+1-5x1+5x=8;
c) 3x+22+2x−12−7x+3x−3=36.
Bài 2. (1,5 điểm) Cho hai hình bình hành MNBA và MNCB.
a) Chứng minh B là trung điểm của AC.
b) Hỏi tam giác MAB thoả mãn điều kiện gì để MNCA là một hình thang cân?
c) Lấy điểm A để tứ giác MNDC là hình bình hành. Hỏi tam giác MAB thoả mãn điều kiện gì để MNDA là một hình thang cân?
-HẾT-
Phòng Giáo dục và Đào tạo ...
Đề thi Giữa kì 1 - Kết nối tri thức
năm 2025
Môn: Toán 8
Thời gian làm bài: phút
(Đề số 2)
I. Trắc nghiệm (3,0 điểm)
Câu 1. Cho các biểu thức đại số sau:
-6x2y; x3−12xy; 5z3; −47yz2.5; -3x + 7y; (2−1)x; xy.
Có bao nhiêu đơn thức trong các biểu thức đã cho ở trên?
A. 5. B. 4.
C. 3. D. 2.
Câu 2. Bậc của đa thức x2yz+12x3y2z+−34xyz3−5 là
A. 6. B. 4.
C. 3. D. 2.
Câu 3. Khẳng định nào dưới đây là sai?
A. Hai đơn thức 12x2y và 2x2y đồng dạng với nhau.
B. Hai đơn thức 7xy3 và -9xy3 đồng dạng với nhau.
C. Hai đơn thức 5x2y2 và -2x2y2 đồng dạng với nhau.
D. Hai đơn thức 65x4y và 56xy4 đồng dạng với nhau.
Câu 4. Cho đa thức A = x2y3 - 5xy2z - 337xy3z2 + 4x - 5. Khẳng định nào dưới đây là đúng?
A. Đa thức A có 4 hạng tử là x2y3; -5xy2z; −37x3y2z4 và 4x.
B. Đa thức A có 4 hạng tử là x2y3; 5xy2z; 37x3y2z4 và 4x.
C. Đa thức A có 5 hạng tử là x2y3; 5xy2z; −37x3y2z4; 4x và -5.
D. Đa thức A có 5 hạng tử là x2y3; 5xy2z; 37x3y2z4; 4x và 5.
Câu 5. Chia đơn thức -3x3y2 cho đơn thức 19xy ta được kết quả là
A. −13x4y3. B. -27x2y.
C. 27x2y. D. −13x4y4.
Câu 6. Khai triển (3x + 2)2 ta được
A. 9x2 - 12x + 4. B. 3x2 + 12x + 4.
C. 9x2 + 12x + 4. D. 3x2 + 6x + 4.
Câu 7. Viết biểu thức -x3 + 3x2 - 3x + 1 dưới dạng lập phương của một hiệu ta được
A. (x - 1)3. B. (x - 3)3.
C. (3 - x)3. D. (1 - x)3.
Câu 8. Biểu thức 8x3 - 18 bằng
A. 2x−124x2+x+14.
B. 2x−124x2−x+14.
C. 8x−1216x2+2x+14.
D. 2x−124x2+2x+14.
Câu 9. Thu gọn đa thức Q = x2 + y2 + z2 + x2 - y2 + z2 + x2 + y2 - z2 được kết quả là
A. Q = 3x2 + 3y2 + 3z2. B. x2 + y2 + z2.
C. 3x2 + y2 + z2. D. 3x2 - y2 - z2.
Câu 10. Cho hai đa thức A = x - x2 + y và B = x - y. Khẳng định nào sau đây là đúng?
A. A.B = x2 + x3 + x2y - y2.
B. A.B = x2 - x3 + x2y - y2.
C. A.B = x2 - x3 - x2y - y2.
D. A.B = x2 - x3 - x2y + y2.
Câu 11. Giá trị của biểu thức N = (2x - 2)(x2 + x + 1) - (x - 1)(x + 1) tại x = 10 là
A. 1 899. B. 1 891.
C. 1 991. D. 2 001.
Câu 12. Phân tích đa thức 3x2 - 6xy + 3y2 - 12z2 thành nhân tử ta được
A. 3(x - y - 2z)(x + y + 2z).
B. (x + y - 2z)(x - y + 2z).
C. 3(x + y - 2z)(x + y + 2z).
D. (x + y - 2z)(x + y + 2z).
II. Tự luận (7,0 điểm)
Bài 1. (2 điểm) Cho hai đa thức:
E = x7 - 4x3y2 - 5xy và F = x7 + 5x3y2 - 3xy - 3.
a) Tìm đa thức G sao cho G = E + F.
b) Tìm đa thức H sao cho E + H = F.
Bài 2. (1,5 điểm)
1. Tính nhanh giá trị các biểu thức sau:
a) 982;
b) 199.201.
2. Không tính giá trị của biểu thức, hãy so sánh: M = 2021.2023 và N = 20222.
Bài 3. (1 điểm) Cho 2x = a + b + c. Chứng minh rằng:
(x - a)(x - b) + (x - b)(x - c) + (x- c)(x - a) = ab + bc + ca - x2.
Bài 4. (2 điểm) Phân tích mỗi đa thức sau thành nhân tử:
a) 8x3yz+12x2yz+6xyz+yz;
b) 81x4z2−y2−z2+y2;
c) x38−y327+x2−y3;
d) x6+x4+x2y2+y4−y6.
Bài 5. (0,5 điểm) Tính giá trị của biểu thức sau:
A = 432+134+138+1 ... 364+1.
-HẾT-
ĐÁP ÁN ĐỀ SỐ 2
Bảng đáp án trắc nghiệm
Câu 1
B
Câu 7
D
Câu 2
A
Câu 8
A
Câu 3
D
Câu 9
C
Câu 4
C
Câu 10
B
Câu 5
B
Câu 11
A
Câu 6
C
Câu 12
C
Đáp án tự luận
Bài 1.
a) G = E + F = 2x7+x3y2−8xy+4.
b) H = F - E = 9x3y2+2xy−10.
Bài 2.
1.
a) 982 = (100 - 2)2 = 1002 - 2.100.2 + 22 = 10 000 - 400 + 4 = 9604.
b) 199.201 = (200 - 1).(200 + 1) = 2002 - 1 = 40 000 - 1 = 39 999.
2. M = 2021.2023 = (2022 - 1).(2022 + 1) = 20222 - 1 < 20222.
Vậy M < N.
Bài 3.
VT = (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a)
= ab+bc+ca+3x2−2xa+b+c
= ab+bc+ca+3x2−2x.2x
= ab + bc + ca - x2 = VP.
Bài 4.
a) 8x3yz+12x2yz+6xyz+yz = yz2x+13.
b) 81x4z2−y2−z2+y2 = z−yz+y9x2+13x+13x−1.
c) x38−y327+x2−y3 = x2−y3x24+xy6+y29+1.
d) x6+x4+x2y2+y4−y6 = x2+y2+xyx2+y2−xyx2−y2+1.
Bài 5.
Ta có A = 32+134+138+1 ... 364+1
Suy ra 2A = 3−13+132+134+138+1 ... 364+1
Vậy A = 3128−12.
Phòng Giáo dục và Đào tạo ...
Đề thi Giữa kì 1 - Kết nối tri thức
năm 2025
Môn: Toán 8
Thời gian làm bài: phút
(Đề số 3)
I. Trắc nghiệm (3,0 điểm)
Câu 1. Trong các biểu thức đại số sau, biểu thức nào là đơn thức?
A. 2xy. B. 3x + 2y.
C. 4(x - y). D. −23xy2.
Câu 2. Đơn thức 25ax4y3z (với a là hằng số) có
A. hệ số là 25, phần biến là ax4y3z.
B. hệ số là 25, phần biến là x4y3z.
C. hệ số là 25a, phần biến là x4y3z.
D. hệ số là 25a, phần biến là ax4y3z.
Câu 3. Cho các biểu thức sau:
5+y21x; −89x2y2x−3; −12x2y; 22x3+13x3y4−x4z+x2; 15+1z.
Có bao nhiêu đa thức trong các biểu thức trên?
A. 2. B. 3.
C. 4. D. 5.
Câu 4. Bậc của đa thức −45x7y2+23x2y5−xy4 là
A. 9. B. 7.
C. 5. D. 3.
Câu 5. Nhân hai đơn thức 5x4y2z và −15x3yz2 ta được kết quả là
A. −x12y2z2. B. −25x7y3z3.
C. x7y3z3. D. −x7y3z3.
Câu 6. Khẳng định nào sau đây là đúng?
A. A−BA+B=A2+2AB+B2.
B. A−BA+B=A2−B2.
C. A−BA+B=A2+B2.
D. A−BA+B=A2−2AB+B2.
Câu 7. Khẳng định nào sau đây là sai?
A. x+y2=x2+2xy+y2.
B. x+y3=x3+3x2y+3xy2+y3.
C. x3−y3=x−yx2+xy+y2.
D. x−y3=x3−y3.
Câu 8. Khai triển biểu thức 19x2−164y2 theo hằng đẳng thức ta được
A. x9−y64x9+y64.
B. x3−y4x3+y4.
C. x9−y8x9+y8.
D. x3−y8x3+y8.
Câu 9. Thu gọn đa thức 2x4y−4y5+5x4y−7y5+x2y2−2x4y ta được kết quả là
A. 5x4y−11y5+x2y2.
B. 5x4y+11y5+x2y2.
C. 9x4y−11y5+x2y2.
D. −5x4y−11y5+x2y2.
Câu 10. Kết quả của tích 4a3b3ab−b+14 bằng
A. −12a4b2−4a3b2+4a3b.
B. 12a4b2+4a3b2+a3b.
C. 12a3b2+4a3b2+4a3b.
D. 12a4b2−4a3b2+a3b.
Câu 11. Để biểu thức x3+6x2+12x+m là lập phương của một tổng thì giá trị của m là
A. 8. B. 4.
C. 6. D. 16.
Câu 12. Phân tích đa thức 5x2−4x+10xy−8y thành nhân tử ta được
A. (x + 2y)(5x - 4). B. (5x + 4)(x - 2y).
C. (5x - 4)(x - 2y). D. (5x - 2y)(x + 4y).
II. Tự luận (7,0 điểm)
Bài 1. (2 điểm)
a) Tính tổng của hai đa thức P = x2y+2x3−xy2+5 và Q = x3+xy2−2x2y−6.
b) Tìm đa thức N biết 2x3y−3x2z+1 + N = −x3y−2x2z-4.
Bài 2. (1,5 điểm) Rút gọn các biểu thức sau:
a) 3−xy22−2+xy22;
b) x−yx2+xy+y2−x+yx2−xy+y2;
c) x−33+2−x3.
Bài 3. (1 điểm) Chứng minh đẳng thức sau:
x−yx4+x3y+x2y2+xy3+y4=x5−y5.
Bài 4. (2 điểm) Phân tích đa thức thành nhân tử rồi tính giá trị của các biểu thức sau:
a) A = 4x−2x+1+2x−42+x+12 tại x = 12.
b) B = x9−x7−x6−x5+x4+x3+x2−1 tại x = 1.
Bài 5. (0,5 điểm) Cho đa thức A = 4x9y2n+10x10y5z2 và đơn thức B = 2x3ny4. Tìm số tự nhiên n để đa thức A chia hết cho đơn thức B.
-HẾT-
................................
................................
................................
Trên đây tóm tắt một số nội dung miễn phí trong bộ Đề thi Toán 8 Kết nối tri thức năm 2025 mới nhất, để mua tài liệu trả phí đầy đủ, Thầy/Cô vui lòng xem thử:
Xem thử
Đề thi Toán 8 Giữa kì 1 theo tỉnh (trên cả nước)
Đề thi Giữa kì 1 Toán 8 Nam Định
Đề thi Giữa kì 1 Toán 8 Bình Dương
Đề thi Giữa kì 1 Toán 8 Khánh Hòa
Đề thi Giữa kì 1 Toán 8 Bà Rịa - Vũng Tàu
Đề thi Giữa kì 1 Toán 8 Hà Nội
Đề thi Giữa kì 1 Toán 8 Bắc Giang
Đề thi Giữa kì 1 Toán 8 Quảng Nam
Đề thi Giữa kì 1 Toán 8 Phú Yên
Đề thi Giữa kì 1 Toán 8 Thái Bình
Đề thi Giữa kì 1 Toán 8 Phú Thọ
Đề thi Giữa kì 1 Toán 8 Hải Dương
Đề thi Giữa kì 1 Toán 8 Đà Nẵng
Đề thi Giữa kì 1 Toán 8 TP Hồ Chí Minh
Đề thi Giữa kì 1 Toán 8 Quảng Ninh
Đề thi Giữa kì 1 Toán 8 Hải Phòng
Đề thi Giữa kì 1 Toán 8 Ninh Bình
Đề thi Giữa kì 1 Toán 8 Hà Tĩnh
Đề thi Giữa kì 1 Toán 8 Bắc Ninh
Đề thi Giữa kì 1 Toán 8 Lào Cai
Đề thi Giữa kì 1 Toán 8 Vĩnh Long
Đề thi Giữa kì 1 Toán 8 Thanh Hóa
Tham khảo đề thi Toán 8 Kết nối tri thức có đáp án hay khác:
Đề thi Học kì 1 Toán 8 Kết nối tri thức (có đáp án)
Đề thi Giữa kì 2 Toán 8 Kết nối tri thức (có đáp án)
Đề thi Học kì 2 Toán 8 Kết nối tri thức (có đáp án)