Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • Tranh Tô Màu
  • Meme
  • Avatar
  • Hình Nền
  • Ảnh Hoa
  • Ảnh Chibi
  • Ảnh Nail
Tranh Tô Màu Meme Avatar Hình Nền Ảnh Hoa Ảnh Chibi Ảnh Nail
  1. Trang chủ
  2. Giáo Dục
Mục Lục

Công thức tính độ dài đường trung tuyến (chi tiết nhất)

avatar
Xuka
23:08 26/09/2025

Mục Lục

Công thức tính độ dài đường trung tuyến (chi tiết nhất)

I. Lý thuyết tổng hợp

- Đường trung tuyến của một tam giác là một đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện.

- Các đường trung tuyến của tam giác giao nhau tại trọng tâm của tam giác.

- Trong tam giác ABC cân tại A và M là trung điểm của BC thì đường trung tuyến AM cũng là đường cao, đường phân giác và đường trung trực.

- Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

- Độ dài đường trung tuyến: Gọi ma,mb,mc là độ dài đường trung tuyến lần lượt vẽ từ đỉnh A, B, C của tam giác ABC, ta có:

II. Các công thức

Cho tam giác ABC vuông tại A, M là trung điểm của BC ta có: AM=12BC.

Gọi ma,mb,mc là độ dài đường trung tuyến lần lượt vẽ từ đỉnh A, B, C của tam giác ABC, ta có:

(với G là trọng tâm của tam giác ABC).

III. Ví dụ minh họa

Bài 1: Cho tam giác ABC có AB = 5cm, AC = 4cm và BC = 4cm. Các điểm M, N, P lần lượt là là trung điểm của BC, AB, AC. Tính độ dài AM, BP và CN.

Lời giải:

Các điểm M, N, P lần lượt là là trung điểm của BC, AB, AC.

⇒ AM, BP, CN là các đường trung tuyến của tam giác ABC.

Xét tam giác ABC ta có:

Bài 2: Cho tam giác ABC vuông tại A. Có BC = 10cm. Điểm M là trung điểm của BC. Tính độ dài AM.

Lời giải:

Xét tam giác ABC vuông tại A có:

M là trung điểm của BC⇒ AM là đường trung tuyến ứng với cạnh huyền BC.

⇒AM=12BC=12.10=5 (cm)

Bài 3: Cho tam giác ABC có trọng tâm G, N là trung điểm của AB. Tính độ dài CN biết CG = 4cm.

Lời giải:

Xét tam giác ABC có trọng tâm G ta có:

N là trung điểm BC ⇒ CN là đường trung tuyến, điểm G nằm trên CN

Ta có:CG=23CN

⇒CN=32CG=32.4=6 (cm)

IV. Bài tập vận dụng

Bài 1. Tam giác ABC có AB = AC = 10 cm, BC = 12 cm. Tính độ dài đường trung tuyến AM.

Hướng dẫn giải:

Ta có tam giác ABC cân tại A, AM là trung tuyến suy ra AM là đường cao, đường phân giác của tam giác ABC nên BM = MC = 12BC = 6 cm

Áp dụng định lý Pythagore cho tam giác vuông AMC có:

AC2 = AM2 + MC2 ⇒AM=AC2-MC2 = 8 cm

Bài 2. Tính độ dài đường trung tuyến AM của tam giác ABC có góc BAC^=120°, AB = 4 cm, AC = 6 cm

Hướng dẫn giải:

Ta có BC2 = AB2 + AC2 - 2.AB.AC.cos120o

⇒BC=29

⇒AM2=AB2+AC22-BC24

⇒AM=7

Bài 3. Cho tam giác ABC vuông tại A có độ dài hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm. Tính độ dài cạnh AB.

Hướng dẫn giải:

Tam giác ABC vuông tại A, AM là trung tuyến nên AM = BM = MC = 6

Suy ra BC = 12

Mặt khác:

Bài 4. Cho tam giác ABC cân ở A có AB = AC = 17 cm, BC= 16 cm. Kẻ trung tuyến AM.

a) Chứng minh: AM ⊥ BC;

b) Tính độ dài AM.

Hướng dẫn giải:

a. Ta có AM là đường trung tuyến tam giác ABC nên MB = MC

Mặt khác tam giác ABC là tam giác cân tại A

Suy ra AM vừa là đường trung tuyến vừa là đường cao

Vậy AM vuông góc với BC

b. Ta có

BC = 16cm nên BM = MC = 8cm

AB = AC = 17cm

Xét tam giác AMC vuông tại M

Áp dụng định lý Pythagore ta có: AC2 = AM2 + MC2 hay 172 = AM2 + 82.

Suy ra AM2 = 172 - 82 = 225.

Do đó AM = 15 cm.

Bài 5. Cho tam giác MNP cân ở M có MB = MC = 17 cm, NP= 16 cm. Kẻ trung tuyến MI.

a) Chứng minh: MI ⊥ NP;

b) Tính độ dài MI.

Hướng dẫn giải:

a) Do MI là đường trung tuyến MNP nên IP = IN.

Mặt khác tam giác MNP cân tại M.

Do đó MI vừa là đường trung tuyến vừa là đường cao hay MI ⊥ NP.

b) Ta có:

• NP = 16 cm nên NI = PI = 8 cm.

• MN = MP = 17 cm.

Xét tam giác MIP vuông tại I

Áp dụng định lý Pythagore, ta có:

• MP2 = MI2 + IP2 hay 192 = MI2 + 82

• MI2 = 172 - 82 = 225 suy ra MI = 15 cm.

0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

Trang thông tin tổng hợp itt

Website itt là blog chia sẻ vui về đời sống ở nhiều chủ đề khác nhau giúp cho mọi người dễ dàng cập nhật kiến thức. Đặc biệt có tiêu điểm quan trọng cho các bạn trẻ hiện nay.

© 2025 - itt

Kết nối với itt

https://nghengu.vn/
Trang thông tin tổng hợp
  • Trang chủ
  • Tranh Tô Màu
  • Meme
  • Avatar
  • Hình Nền
  • Ảnh Hoa
  • Ảnh Chibi
  • Ảnh Nail
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký